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Abstract. The generalization of QCD motivated classical SU(2) Yang–Mills theory coupled to a scalar field
is discussed. The massive scalar field, corresponding to the scalar glueball, provides a confining potential
for static, point-like, external sources. In the case of a massless scalar field screening solutions are found.
However, there is a confining sector as well. Both, massive and massless confining solutions, are compared
with phenomenological potentials. The case of a non-dynamical permittivity is also discussed.

1 The model

Recently, Dick and Fulcher [1] have proposed an inter-
esting model in which the lowest glueball, represented
by a massive scalar field φ, has been coupled in a non-
minimal way to the SU(2) gauge fields. They have chosen,
in analogy with the chiral quark models [2], one glueball
coupling: φF aµνF a

µν . Their model provides confinement of
quarks and gives a quite reasonable interquark potential,
Uqq̄ ∼ r1/3.

However, as was pointed out by Zalewski and Motyka,
the most probable potential which gives the best fit to the
quarkonium system takes a different form [3], namely

UMZ(r) = C1

(√
r − C2

r

)
, (1)

where C1 � 0.71 GeV1/2 and C2 � 0.46 GeV3/2. Due to
this the model should be modified. This can be done by
using a slightly more complicated effective coupling. It
has to be underlined that in spite of that modification the
scalar field still represents the lowest scalar glueball.

In the present paper we focus on the following scalar–
gauge action:

S=
∫

d4x


−1

4

(
φ

Λ

)8δ

1 +
(
φ

Λ

)8δ
F a

µνF
aµν +

1
2
∂µφ∂

µφ−m2

2
φ2


 .
(2)

Here, m is the mass of the scalar field, Λ is a dimensional
and δ a dimensionless constant. In order to have the stan-
dard Maxwell-like behavior of the fields in the neighbor-
hood of sources the particular form of the denominator
has been added. It does not inflect the long range behav-
ior of the fields but provides asymptotic freedom in the
limit of a strong scalar field [4].
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The field equations corresponding to the action (2)
take the form

Dµ




(
φ

Λ

)8δ

1 +
(
φ

Λ

)8δ
F aµν


 = jaν , (3)

and

∂µ∂
µφ = −2δF a

µνF
aµν φ8δ−1

Λ8δ

(
1 +

φ8δ

Λ8δ

)2 −m2φ, (4)

where jaµ is an external current.
In the next section it will be shown that the action (2)

possesses confining solutions in the massive sector. More-
over, these solutions describe a wide family of confining
potentials which can be compared with various potentials
found in fits to the phenomenological data [5–7].

Interestingly enough, there is also a confining solution
in the massless sector, where the scalar field cannot be
identified with any glueball. Finally we prove that the
model with a non-dynamical scalar field provides confine-
ment of the external sources as well. The problem of glue-
ball states in these models is discussed in the last section.

2 Confining solutions

2.1 Massive case

Let us now discuss the Coulomb problem. We find so-
lutions of the field equations generated by an external,
static, point-like source:

jaµ = 4πqδ(r)δa3δµ0. (5)

The restriction to the Abelian source is not essential. It is
possible to investigate a more general, static non-Abelian
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source [8]: ja
µ = 4πqδ(r)Caδµ0. Here Ca is the expectation

value of the su(Nc) generator for a normalized spinor in
color space. However, the fields generated by the above
sources have an identical dependence on the spatial coor-
dinates. They differ only by a multiplicative color factor.
For that reason it is sufficient to analyze only an Abelian
source (5). Then the field equations read

r2
(
φ

Λ

)8δ

1 +
(
φ

Λ

)8δ
E




′

= 4πqδ(r), (6)

∇2
rφ = −4δE2 φ8δ−1

Λ8δ

(
1 +

φ8δ

Λ8δ

)2 +m2φ. (7)

We use the standard definition Eai = −F a0i. The electric
field is chosen in the same color direction as the source
�Ea = E(r)δ3ar̂. One can easily derive the electric field
from (6) and express it in terms of the scalar field:

E(r) =
q

r2

(
1 +

(
φ

Λ

)−8δ
)
. (8)

This field can be understood as the usual Coulomb field
E(r) = αeff/r

2 in an unusual medium. The medium is
characterized by the scalar field which modifies the effec-
tive coupling constant αeff :

αeff = q

(
1 +

(
φ

Λ

)−8δ
)
. (9)

Using (8) we are able to rewrite the equation (7) in the
following form:

∇2
rφ = −4δ

q2

Λr4

(
φ

Λ

)−8δ−1

+m2φ. (10)

Unfortunately, this equation is still too complicated to in-
tegrate it analytically. However, on account of the fact
that we are mainly interested in the long range behavior
of the fields we can analyze (10) in the asymptotic regime,
i.e. for r → ∞. The asymptotic solution is found to be

φ ∼
(

2
√
δqΛ4δ

m

)1/(1+4δ)(
1
r

)2/(1+4δ)

. (11)

Then the electric field is

E ∼ q

r2
+
(

4δq
m2

)−4δ/(1+4δ)

Λ8δ/(1+4δ)
(

1
r

)(2−8δ)/(1+4δ)

.

(12)
Finally, the corresponding potential has the form

U ∼ −q

r
+

1 + 4δ
12δ − 1

(
4δq
m2

)−4δ/(1+4δ)

×Λ8δ/(1+4δ)
(

1
r

)(1−12δ)/(1+4δ)

, (13)

for δ �= −1/4 or 1/12. One can observe that δ = 1/12
corresponds to a logarithmic behavior of the electric po-
tential:

U ∼ −q

r
+
( q

3m2

)−1/4
Λ1/2 ln r. (14)

In the framework of such classical models, confinement
is understood as the appearance of a singularity of the
electric potential (energy density) at spatial infinity. The
energy becomes infinite due to the long range behavior of
fields. This effect takes place for δ ≥ 1/12. However, it was
shown by Seiler [9] that confining potentials cannot grow
faster than linearly for large r. This gives us an upper
bound for the parameter δ. Concluding, the model given
by the action (2) can be used for modelling confinement
of the external sources for the following parameter δ:

δ ∈
[

1
12
,
1
4

]
. (15)

The standard linear potential is obtained for δ = 1/4.
Then we achieve a model discussed previously by Dick [4].
In this model a global, confining solution was found. As
one could expect the asymptotic behavior of the solution
is linear.

2.2 Massless case

In this section we are going to focus on the problem of
confinement in the case of a massless scalar field. Appar-
ently, such a field can no longer be identified with the
scalar glueball. Nonetheless, one can still use it to mod-
ify the properties of the vacuum. The scalar field becomes
an effective field describing dynamical permittivity of the
medium, i.e. the vacuum. One can notice that the model
belongs to the so-called color dielectric field theories.

Equation (10) for the scalar field takes a simpler form
now:

∇2
rφ = −4δ

q2

Λr4

(
φ

Λ

)−8δ−1

, (16)

which can be integrated analytically. We have found a
family of solutions regular at spatial infinity and labelled
by a positive parameter β0:

φ = AΛ

(
1
rΛ

+
1
β0

)1/(1+4δ)

, (17)

where the constant A is given by

A = [q(1 + 4δ)]1/(1+4δ).

The corresponding electric field has the form

E =
q

r2
+A−8δ q

r2

(
1
rΛ

+
1
β0

)−8δ/(1+4δ)

. (18)

We see that there exists an infinite set of electric field
solutions, generated by the external point source, which
falls as r−2 for large r. The behavior of the electric field
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near a source strongly depends on the value of the param-
eter δ. If δ ≥ 0 the singularity at r = 0 is identical to
that generated by a point source in the standard Maxwell
electrodynamics. If δ < 0 then the singularity can be ar-
bitrarily large.

Besides the family of solutions mentioned above, there
is a single field configuration, which solves the equations
of motion and gives confinement. The solution is

φ = AΛ

(
1
rΛ

)1/(1+4δ)

. (19)

The electric field is then given by the formula

E =
q

r2
+A−8δqΛ2

(
1
rΛ

)2/(1+4δ)

. (20)

Thus the electric potential for δ �= 1/4 takes the form

U = −q

r
+

4δ + 1
4δ − 1

A−8δqΛ8δ/(1+4δ)
(

1
r

)(1−4δ)/(1+4δ)

(21)

and for δ = 1/4

U = −q

r
+ qA−8δΛ ln(Λr). (22)

In fact, we observe confining behavior (in the same sense
as for the massive field) for the parameter δ:

δ ∈
[
1
4
,∞
)
. (23)

As was recently shown [10], it is possible to get rid of
the non-confining solutions (17) and (18) by adding the
following potential term:

V (φ) = αφ4
(
φ

Λ

)8δ

, (24)

where α is a positive constant. Then only the confining so-
lution survives. Quite interesting, if we omit the denom-
inator in the dielectric function in the action (2) (this
means that we are no longer interested in restoration of
the standard r−2 behavior of the electric field in a small
neighborhood of a source) then the non-confining solu-
tions describe the so-called screening phenomena known
from quantum Yang–Mills theory [11]. The field configu-
ration generated by a fixed charge can have an arbitrary
small but positive energy [12].

2.3 Non-dynamical permittivity

Let us now proceed to discuss the third possibility, that is,
to neglect the kinetic term of the scalar field in (2). In this
case φ is no longer a dynamical field [13]. In other words, it
is possible to treat it as an additional field which, after ex-
pressing it in terms of the gauge fields, can be completely
removed from the action. One can easily observe that in

order to deal with a non-trivial theory we are forced to add
a potential term for the scalar field. In our calculation the
potential is chosen as in the massless case (24).

Then the action takes the following form:

S =
∫

d4x

[
−1

4

(
φ

Λ

)8δ

F a
µνF

aµν − αφ4
(
φ

Λ

)8δ
]
. (25)

After variation with respect to the scalar field one gets

8δF
(
φ

Λ

)8δ−1

− 4(2δ + 1)αφ4
(
φ

Λ

)8δ−1

= 0, (26)

where F = −(1/4)F aµνF a
µν . As previously we will inves-

tigate only the electric part of the theory. Then one can
trivially solve it and find

φ4 =
E2

a
, (27)

where for simplicity a new constant a = (2δ + 1)α was
defined. Substituting this into the Gauss law we obtain[

r2
(
E2

aΛ4

)2δ

E

]′
= 4πqδ(r). (28)

The solution reads

E = a2δ/(1+4δ)
( |q|
Λ2r2

)1/(1+4δ)

Λ2. (29)

This gives us the electric potential

U = a2δ/(1+4δ)|q|1/(1+4δ) 4δ + 1
4δ − 1

(
1
Λr

)(1−4δ)/(1+4δ)

Λ

(30)
for δ �= 1/4 and

U = 4
√
aq2Λ ln(Λr) (31)

for δ = 1/4. Identically to the massless scalar field the con-
finement of the point sources is found for all δ parameter
values equal to or larger than 1/4. From the confinement
point of view these models are equivalent.

As was said before, the action (25) can be expressed
only by gauge fields. After a simple calculation one obtains
the Pagels–Tomboulis lagrangian [14]:

L = −1
4
F 2

[(
F 2

Λ4

)2
]δ

. (32)

Of course, the pertinent equations of motion, in the elec-
tric sector, derived for the Pagels–Tomboulis model are
the same as (28) (up to an unimportant multiplicative
constant).

Models in which the permittivity depends on the
strength tensor F has been very successfully analyzed in
the context of the effective theory for low energy QCD
[15,16]. Here no additional, effective scalar field is needed.
Confining solutions emerge due to the modification of
the vacuum by the gauge fields. In fact, in the Pagels–
Tomboulis model a source charge generates an infinite en-
ergy field configuration, whereas a configuration originat-
ing from a dipole-like source has finite energy [14,17].
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3 Conclusions

In the present paper we have analyzed the SU(2) gauge
field coupled to the scalar field. For the massive and mass-
less scalar field as well as for the non-dynamical scalar
field, solutions describing confinement have been found. It
is relatively easy to model confinement of external sources
using the scalar dilaton/glueball field. Our models seem
to be very similar from the confinement point of view. Of
course, there are also some differences between them.

Firstly, the occurrence of confinement strongly depends
on the value of the parameter δ. The massive and mass-
less models require different values of δ. For example the
best phenomenological quark–antiquark potential, found
by Zalewski and Motyka in fits to the spectrum of quarko-
nia, is obtained for δ = 3/20 for the massive and for
δ = 3/4 for the massless case respectively. In fact, then
U ∼ √

R, where R is the distance between the sources.
Another known interquark potential, U ∼ R0.1, used by
Martin [7], is realized for δ = 11/116 (massive field) or for
δ = 11/36 (massless field). The difference between these
models is even more apparent in the case of linear con-
finement. The massive model describes it for δ = 1/4. It
is unlikely for the massless model, where the linear po-
tential is realized only in the limit δ → ∞, which cannot
be implemented on the action level. The linear confine-
ment can be only approximated with arbitrary accuracy
by taking a sufficiently large δ.

To conclude, in spite of the differences mentioned above,
all the models considered here can very well serve to model
confinement of quarks. Nevertheless these models differ
essentially. One of the most profound differences is visible
if we look at the way how glueball states appear in the
models.

If we would like to treat these models as candidates for
the description of low energy QCD, the problem of glue-
balls must be taken into consideration. It is obvious that a
good effective model is expected not only to provide con-
finement of quarks (and give a reasonable quark–antiquark
potential) but is also expected to have solutions which
could be interpreted as glueballs. In the massive case the
situation is clear. The scalar field represents the scalar
glueball 0++ which has mass m. The dielectric function
determines the coupling between the glueball and gluons.
For instance, δ = 1/8 gives one glueball coupling. For dif-
ferent values of δ we have a more complicated effective
coupling. Unfortunately, this model is unable to describe
other glueball states. In order to do this one has to en-
large the number of fields. For example the pseudo-scalar
glueball 0−+, represented by a new field ψ, requires an
axion-like coupling [18].

The situation changes drastically if we consider the
remaining models (with the dynamical or non-dynamical
scalar field). Obviously, the interpretation that the scalar

field corresponds to the glueball is no longer correct. Be-
cause of that, glueballs should appear in a different, non-
trivial way. It is believed that in the framework of these
models glueballs could be described as (topological) soli-
tons i.e. static, localized and finite energy solutions of the
sourcesless field equations. This is a very attractive way
of studying glueballs. Different glueballs would be given
by different solitons characterized by a topological index
(cf. e.g. the Faddeev–Niemi model [19]).

As a result, the existence of topologically non-trivial
solutions in the framework of scalar–gauge models is cru-
cial from the QCD point of view. It would let us justify
which model can be really relevant as the effective model
for low energy quantum chromodynamics. We plan to ad-
dress this problem in our proceeding paper.
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